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PREFACE 

The purpose of this paper is to describe what appears to 

be a new probabilistic model of combat attrition.  While related 

to the binomial attrition model discussed in KARR (197*0, this 

model is different in two important respects.  First, the mathe- 

matical assumptions differ and this, we believe, is the most 

significant way of comparing mathematical models.  Second, this 

new model allows simple computation of the probability distri- 

butions of relevant random variables, rather than just the 

expectations.  Section 1 of this paper concerns the mathematical 

assumptions of our attrition process and the characterizations, 

derived from the assumptions, of various stochastic processes of 

interest.  In Section 2 we isolate consideration of physical 

interpretations of our mathematical assumptions, and we discuss 

combat situations which might in some sense satisfy the assump- 

tions.  Sections 3 and l\  deal, respectively, with generalizations 

and computational aspects of the basic model.  This research was 

motivated by a review by ANDERSON (1972) of attrition processes 

used in several air-to-air models.  In the course of this research 

we became aware that some similar but less complete and less 

rigorous results are given in WHITAKER (1970). 

iii 
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1.  MATHEMATICAL ASSUMPTIONS AND RESULTS 

Our model describes a bilateral combat attrition process 

involving a set of defenders and a set of penetrators (or 

attackers).  The assumptions we give here attempt to be as 

free as possible of restrictive physical interpretation, but 

obviously cannot be entirely so.  Roughly speaking, one should 

envision the defenders as protecting some target that the 

penetrators wish to attack. 

Here are our assumptions: 

1. Penetrators attempt to penetrate the defenses and reach 

the target successively, one after another. 

2. A penetrator attempting penetration of the defenses is 

detected by each defender present with probability d, indepen- 

dent of detections by any other defenders and of the past history 

of the process. 

3. If the penetrator is detected by one or more defenders 

then exactly one defender is assigned to engage the penetrator 

in a one-on-one duel. 

iJ. An engagement between a penetrator and a defender ends 

in one of the following outcomes with the respective probabili- 

ties shown, independent of the past history of the process. 

Outcome of Engagement       Probability 

Destruction of both p.. 

Destruction of penetrator only p2 
Destruction of defender only p-^ 

Destruction of neither p^ 

Clearly, 0 <_  p± < 1 (1=1,2,3,4) and p1 + pg + p3 + p^ = 1. 
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5.  A defender that survives a duel is unable to return to 

the set of active defenders; a penetrator that survives a duel 

must turn back without attempting'to attack the target. 

All action is assumed to occur within some fixed period of 

time. 

We now define some quantities of interest in this attrition 

model, whose probability distributions and expectations we shall 

then proceed to compute. 

Let DQ be the initial number of active defenders (i.e., the 

number of defenders before any penetrators have attempted pene- 

tration).  A feature of this model is that DQ can be a random 

variable.  In general, the random variable DQ could assume the 

value of any nonnegative integer.  But both for computational 

reasons and for realistic modeling (there never is an infin- 

ite number of defenders) we assume that there is an upper 

bound, M, on the number of defenders.  Thus, we assume that D~ 

is concentrated on the integers 0,1,...,M.  Let 

D = number of active defenders remaining after k penetra- 
tors have attempted penetrations; 

B  = number of engagements that occur involving one of the 
first k penetrators; 

X, = number of defenders destroyed by the first k penetra- 
R  tors; 

Y = number of the first k penetrators destroyed; 

U = number of defenders engaged, but not destroyed, by 
the first k penetrators; and 

V\ = number of the first k penetrators which are engaged 
by defenders, but not destroyed. 

Obviously, 

(1) 

\ 
+ Dk — Do 

\ 
+ 
\ 

= Bk 

\ 
+ 
\ 

= 
\ 

for each k. 



The stochastic process D = (Dk)k>0 describing the evolution 

of the set of active defenders is the~~key to the analysis of this 

attrition model and may be characterized in the following manner: 

(2)  THEOREM.  The stochastic process D is a Markov process with 

transition matrix P given by 

P(0,0) = 1 , 

while for i > 1, 

PI 
i    (i - dr ,      if j = i - i 

if j = i. 

(1 - (1 - d 

1(1 - d)1 , 

PROOF.  Suppose at some point there remain i active defenders; 

since future evolution of the process is independent of the past 

once this number i is known, D has the Markov property.  The 

next arriving penetrator remains undetected by all defenders with 

probability (1-d) , by Assumption 2, in which case the number 

of active defenders remains at i.  Otherwise, with the comple- 

mentary probability 1 - (1-d) , the penetrator is detected and 

the number of active defenders decreases to i - 1. 

The transition matrix P has the following simple form: 

0 

1 

2 
P = 

M 

0 1                  2 

1 0                  0 

d (1-d)             0 

0 l-(l-d)2   (1-d)2 

M - 1 M 

l-(l-d) 
M (1-d) M 



which facilitates efficient calculation on a computer of the 

powers of P used in the following further computations.  In 

Section 4 we give a closed form computation of the powers of P. 

The engagement process B ■ (&.)„  is somewhat harder to 

describe.  Because of the presence of the random variable D0 in 

the representation (1), this process is not a Markov process. 

But we can state two descriptions: the first is interesting in 

an abstract sense and the second is of practical computational 

value. 

(3) THEOREM.  Conditioned on the random variable D , B is a 

Markov process with transition matrix P given by 

£(i,j) = P(D0 - I, D0 - j) . 

We omit the straightforward proof; but note the proof of 

the following result. 

(4) THEOREM.  For each k and for j < k we have 

M v 
P{B, - j} = I   P{Dn = UP

KU,£-j) . 
K       £=0   u 

PROOF.  Using properties of conditional probabilities (this 

argument essentially gives Theorem (3) as well) we have 

P{Bk - J) - E[P{BR = j|D0>] 

" E[P{D0 " Dk = JIV] 

« E[P{Dk = D0 - J|D0>] 

= E[Pk(DQ, DQ - j)] 

(where Pk is the k  power of the transition matrix P) 

= I     P{Dn = UP
k(Ä,H) •        [1 

£=0   u 



An additional advantage of this new attrition process is 

the ease with which it can accept random variables as inputs, 

something many other models are not able to do.  See Table 1 

for details. 

We next compute the probability distributions for the 

attrition processes X ■ (xk)k>n 
and Y = ^i^iorv 

(5)  THEOREM.  For Ä, < k we have 

P{X„ - 1) - X (i)(P1  *  PQ)
A(Po + P^^PCB,, = m} 

*       m-£ W     X   3   2   4      k 

and 

■ I (;K v *>    L W(pi + p2)"(p3 
+ p^n""p{Bk =n} • 

PROOF.  Given that B, = m, the number of defenders destroyed is, 

according to Assumption 4, binomially distributed with parameters 

(m, p + p~), so the first expression follows.  The second is 

entirely analogous. [J 

By exactly the same methods, we obtain probability distri- 

butions for the processes U and V, included here for the sake 

of completeness. 

(6)  THEOREM.  Provided I  < k 

P(U,       1}   =     l     W(Po  +  Pll)*(Pl   ♦  P*)m-l?{Bv    ■  m} 'k "  *'   "     L0   VJKP2       *V   KV1      VS m=Jc 

and 

P{\ "  *>  s    I     (ä)
(
P3  

+ Pl/^i  + P2
)n^P{Bk =  n}   ' 

The  proof  of Theorem   (6)   is  also  omitted  since   it   follows 
from   (1)   that 



and 

P{Uk = A|Bk = m} = P{Xk = m - l\B^  = m} 

P{Vk = ^|Bk = n} = P{Yk = n - A|Bk = n} , 

so that Theorem (6) is actually a corollary to Theorem (5). 

There are other quantities of interest whose probability 

distributions one would like to obtain.  Let 

R = number of defenders surviving (but not necessarily 
active) after k attempted penetrations, 

S = number of the first k penetrators which are not 
detected and engaged by defenders, 

T. = number of the first k penetrators surviving inter- 
k actions (if any) with defenders. 

We remind the reader that defenders involved in but surviving 

an interaction would be able to participate in a future battle 

(but not in the currently ongoing battle) and that the same 

applies to penetrators that are engaged but not destroyed 

(those denoted by T above).  The unengaged penetrators (S 

above) can proceed to attack their target. 

Clearly 

Rk = Do - xk - Dk + Uk 

(7) S, = k - Bk 

Tk = k " Yk = Sk + Vk • 

(8) THEOREM.  For I  > M - k, we have 

P(Rk=U= I   I      (1itVPl
+P3)i""(VP^J"i+tpk(1'1-J)P{V1} 

k
     i=fc j=i-£ \  / 

P{Sk=A} = P{Bk=k-Ä,} 

P{Tk=A} = P{Yk=k-£} . 



We omit the proof, which interested readers can supply for 

themselves. 

So far we have considered fixed numbers of penetrators. 

What happens if the number of penetrators attempting to penetrate 

the defense within the time period under consideration is a ran- 

dom variable A? Essentially all the necessary mathematics is 

done.  For example, suppose we wish to compute the probability 

distribution of the number of defenders killed, which in this 

case is the random variable X..  Then, assuming that A is inde- 

pendent of D and the attrition process and that N is an upper 

bound on the number of penetrators, 

N 
PCX  = q} = I     P{X, = q, A = k} 

a       k=0    a 

N 
I     P(X, = q, A = k> 

k=0 k 

N 
I     P{X, = q}P{A = k} 

k=0 k 

which is immediately calculable in terms of the probability 

distribution of A and quantities given in Theorem (5).  Similar 

comments apply to the other stochastic processes we have defined. 

In Table 1 below we summarize how all relevant probability 

distributions can be computed in terms of the probability distri- 

butions of the numbers of defenders and penetrators, the detection 

probability d, and the kill probabilities p,, p2, p-, p^.  We also 

include the expectations of these random variables. 

In some cases the identities (1) and (7) allow simplifica- 

tion of the expressions for expectations, and we have done so in 

Table 1.  Indeed, all expectations depend only on E[DQ], E[A], 

and E[DAL 



Table   1.      COMPUTATION   OF   PROBABILITY   DISTRIBUTIONS 

Given Data:    y(i) = P{Dp=i}  (where 0 < i < M and DQ is the initial  number of 
defenders) 

X(j) = 

prp2'p3>P4 = 

d = 

P{A=j}    (where 0 <_ j < N and A is the number of 
penetrators) 

engagement outcome probabilities  (see Assumption 4) 

probability of detection (see Assumption 2) 

1. 

Pj(i,k) = < 

n    (l-(i-d)*) {     ■ '    (1'd) 

£=k+l —* 

n 

r=k   n (0-d)r - (i-d)q) 
q=k 

(l-d)1J 

0 

k < i , 

i-k < j 

k=i 

otherwise 

(see Theorem 16) 

D« = number of remaining active defenders after all  attempted 
penetrations 

M     N 
P{DA=k} =    I     I u(i)A(j)PJ(i,k) 

M 1-0 j=0 

E[DA] =    I I   y(i)X(j)kPj(i,k) 
i=0 j=0 k=0 

2.    BA = number of one-on-one engagements 

M      N 
P{BA=k} =    I      I u(i)A(j)PJ(i,i-k) 

M i=0 j=0 

E[BA] = E[D0]  -  E[DA] 

M M      N      i 
=  .1 MD- I      I      I u(i)X(j)kPJ(i,k) 

i-O j=0 k=0 (continued on next page) 
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Table   1   (continuted) 

3.    X^ = number of defenders destroyed 

M     N     i 

x£-k 

P«A=k} =    I     I     I y(i)X(j)Pj(i,i-il)fM(p1+p3)
k(p2+p 

M i=0 j«0 A=0 \V    '    3       z 

E[XA] =  (Pl+P3)E[BA] 

/ M M      N      i \ 
= (PI+P3)( I 1*0)- I    I    I y(i)A(j)kPJ(i,k)j 

1    J \i=0 i=0 j=0 k=0 / 

4. Y. = number of penetrators destroyed 

P{YA
=k} = I      I      I  y(1)X(J)PJ(1J-£)(:)(Pl+P2)

k(Po+P4 M    i=0 j=0 £=0 W ' *   J 4 

E[YA] ■ (Pl+P2)E[BA] 

/M      M  N  i \ 
= (PT+PO)! I MD- I I      I  u(i)X(j)kPJ(i,k)) 1 Z \i=0    1-0 j=0 k=0 / 

5.    RA = number of defenders surviving at the end of the time period under 
consideration 

M       M       4 

P{RA=k> =    Z     I     Iw(1)X(J)PJ(1.1-m)f™k)(p2+p4)
m_i+k(pl+p3)

1"k 
A i=0 j=0 m=0 V  7    <■    4 '    i 

E[RA] = E[D0] - E[XA] 

/ M M     N     i .        \ 
= (P?+PJ( I iy(i) + (PT+P,) [     I     I u(i)X(j)kPJ(i,k) 

z   * Vi=0 '    d 1-0 j-0 k=0 / 

(concluded on next page) 
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Table   1   (concluded) 

6.    S. = number of penetrators able to attack the target 

M     N 
P{SA=k} -   I     I u(i)A(j)PJ(i,i-j+k) 

M 1=0 j=0 

E[SA] " E[A] - E[BA] 

N      M      M  N  i 
= I  JA(j)- I  1p(1)+ I      I      I  y(i)X(j)kPJ(i,k) 

j=0    i=0    i=0 j=0 k=0 

7.    T. = number of penetrators surviving interactions (if any) with 
defenders 

y       II       4 

P{T.=k} =   I     I     Iu(i)X(J)PJ(i,i-ni)fA)(P1+P3)j-k(p2+pJn,-j+k 
M i=0 j=0 m=0 \J 7    i    j co> 

E[TA] = E[A] - E[YA] 

N M 
=    I JX(j)  -  (p,+p2)  I 1u(D 

j=0 '    Z 1=0 

M      N      i , 
+ (Pi+P?) I     I     I y(i)MJ)kPJ(i,k) 

1    ' i=0 j=0 k=0 

10 



2.  DISCUSSION AND INTERPRETATION OF THE ASSUMPTIONS 

In this section we will do three things.  First, briefly 

list some types of combat that could be considered as penetra- 

tion processes.  Second, discuss some alternative models of 

barrier penetration processes so that they can be compared to 

the new process presented here.  Third, describe some physical 

situations in which the assumptions of our attrition model, 

as presented in Section 1, are satisfied to some extent. 

a.  Penetration Processes 

As described by KARR (1975), a number of conventional 

combat situations can be classified into three categories. 

First, each side could try to kill the other, or they both could 

try to control the same territory.  Second, one side could try 

to maintain a barrier through which the other side attempts to 

penetrate in order to attack targets beyond the barrier.  And 

third, one side could attempt to destroy passive targets on 

the other side.  The attrition model given here is not appro- 

priate for the first category of combat; it should be considered 

as a candidate for describing the second category; and it might 

be considered for describing the third category—if one con- 

siders the attackers as a moving barrier that passes over (or 

under) the passive targets. 

Some examples of barrier penetration processes that can 

occur in conventional combat are as follows:  (1) Interceptor 

aircraft through a screen of escort aircraft; (2) attack air- 

craft through interceptors; (3) attack aircraft through SAMs 

and AAA; (4) submarines through a barrier consisting of enemy 

11 



submarines; (5) submarines through search aircraft; (6) sub- 

marines through naval ships escorting convoys; (7) soldiers 

through enemy lines; and (8) anything through a minefield. 

b.  Comparison with Alternative Assumptions 

Depending on the particular details of the above examples, 

the attrition model presented here may or may not be an appro- 

priate description.  Assumptions 1, 2, and 3 form a basis for 

comparing our model with other attrition models that could be 

used to describe barrier penetration.  Some alternative forms 

of Assumption 1 are as follows:  (a) SIMULTANEOUS—the penetra- 

tors arrive at the barrier simultaneously and are simultaneously 

vulnerable to all defenders; (b) PENETRATOR SEQUENTIAL—assump- 

tion 1 as stated in Section 1; (c) DEFENDER SEQUENTIAL—pene- 

trators arrive at the barrier simultaneously, but the defenders 

are one behind another in the barrier so that the penetrators 

pass by the defenders sequentially; (d) DOUBLE SEQUENTIAL—pene- 

trators arrive sequentially and pass by the defenders sequentially, 

We will not attempt to construct plausible alternatives to 

Assumptions 2 or 3 for the Defender Sequential and the Double 

Sequential cases.  We consider the following alternatives for 

the Simultaneous and Penetrator Sequential cases:  An alterna- 

tive to Assumption 2 (which we will refer to below as Individual 

Detection) is that there is one central detector, such as an 

AWACS, and that the defenders can be coordinated and assigned to 

engage any particular detected penetrator.1  In this alternative, 

d is defined as the probability that the central detector detects 

a particular penetrator, so the probability that a particular 

penetrator is detected is independent of the number of defenders. 

iThis does not mean that we reconmend only this alternative for modeling 
attrition considering AWACS. A combination of the processes described 
below might be more appropriate. For example, the AWACS could make an 
initial detection and send a group of defenders to engage a group of 
attackers, and the engagement between groups could be modeled by one of 
the other alternative sets of assumptions. 

12 



We will refer to this alternative as Coordinated Central Detection. 

An alternative to Assumption 3 (one-on-one combat) is that two or 

more defenders can engage a penetrator (many-on-one combat). 

Graphically, these possibilities can be displayed as follows: 

Encounters 

SIMULTANEOUS (I.D.) 

SIMULTANEOUS (C.C.D.) 

PENETRATOR SEQUENTIAL (I.D.) 

PENETRATOR SEQUENTIAL (C.C.D.) 

DEFENDER SEQUENTIAL (I.D.) 

DOUBLE SEQUENTIAL (I.D.) 

One-on-0ne Many-on-One 
A B 

C D 

E F 

G H 

I b^$$^ 
J ^^^ 

where I.D. denotes Individual Detection, C.C.D. denotes 

Coordinated Central Detection, and A through J denote possibly 

different attrition equations which correspond to the basic 

sets of assumptions.1  For comparison purposes, we will briefly 

describe these equations. 

SIMULTANEOUS (Individual Detection):  The many-on-one case (B in 

the taxonomy) is the binomial attrition model discussed In KARR 

(197*0.  Using the notation given in Section 1 (with k = p2 + p^, 

and with DQ and A assumed to be deterministic), the binominal 

attrition equation for defenders killing penetrators gives that 

E[Y.], the expected number of the A penetrators that are killed, is 
n 

(9) E[YA] = A(l-[l-£(l-[l-d]A)] °) . 

The reader is referred  to KARR  (1974)   for details  and to ANDERSON, 
BRACKEN,   and  SCHWARTZ   (1975)   for  a method  to  compute  the  expected 

number of defenders that  are  killed.     Assuming one-on-one  combat 

1This taxonomy is meant to be illustrative but not exhaustive; many other 
sets of assumptions are possible. 

13 



(Case A above) reduces the expected number of penetrators killed to 

(10) E[YA] = Ak(l-[l-J-(l-[l-d]A)] °) , 

To see that (10) follows from (9), note that if k is replaced 
by 1 in (9) then the right side is the expected number of 
penetrators that are detected by one or more defenders.  Assuming 
that only one of the defenders can engage each detected penetrator 
gives (10). 

SIMULTANEOUS (Coordinated Central Detection):  If the defenders 

can be coordinated and assigned to engage any particular detected 

penetrator, then it is reasonable to assume that one defender 

would be assigned to engage each detected penetrator, provided 

there are enough defenders available in the one-on-one case 

(C above), and that the defenders would be evenly proportioned 

among the detected penetrators in the many-on-one case (D above). 

For the one-on-one case we have 

(ID E[YA] = k  f QdJ(l-d)A~J min{j,D0L 

For the many-on-one case, 

(12)    E[YA] = I   0yj(l-d)A-j{Do-I-^lj)(l-(l-k) ~J"+1) 

D0 B-S-l 
+ ((0-~l + Dj-Do)(l-(l-k)  

J )}, 

D0 where ff-p] denotes the largest integer less than or equal to 

Dn     Dn   Dn   Dn 
-j-  (so tt-j^-I < -p < I-pl + 1).  An additional assumption behind 

(12) is that multiple engagements against the same penetrator 

occur independently, so the probability that a penetrator 

engaged by n defenders is killed is given by 1 - (1-k) . 

14 



PENETRATOR SEQUENTIAL   (Independent  Detection):     The  one-on-one 

case   (E above)   is  precisely  the  model  assumed  in  Section  1  of 

this  paper.     The many-on-one  case   (P above)   requires  additional 
research and will not  be discussed  in this  paper. 

PENETRATOR  SEQUENTIAL   (Coordinated  Central  Detection):     There 

There  is  no  essential difference between Simultaneous  Combat 

with Coordinated  Central  Detection and  Penetrator Sequential 
Combat  with Coordinated Central Detection  in the  one-on-one 
case,   so   (11)   also  holds   for  case G above.     The many-on-one  case 
(H above)   is  different   from Simultaneous  Combat  because,   for 
example,   the  Central Detector must  decide  how many  defenders  to 

allocate  against  the  first  detected penetrator without  knowing 

either how many  previous  penetrators  went  through undetected or 
how many more penetrators  will  be  detected.     Suppose  that  Dn/dA 

is  an integer.     Then one  reasonable way to make  this  allocation 
(if the  total  number  of penetrators  is  known  in advance  to  the 
central detector  and  if DQ/dA  is  an  integer)   is  to  allocate 
DQ/dA  defenders   to  engage  each  of  the   first   [dA]  penetrators 

that  are  detected,   and  to allocate  the  remaining defenders  against 

the  next  detected penetrator.1     This  allocation gives 

(13) E[YA]  =     I   QdJ(l-d)A~Jmin{j JdAl) (l-(l-k)   °       ) 

£ /A\   I A-l D   (1-ldAl/dA) 
+ I (A)d\l-d)A   *(l-(l-k)   ° )   , 

fc=04Al+i   V7 

provided that DQ/dA is an integer. (Obtaining a formula for 
E[Y.] when DQ/dA is not an integer requires only sufficient 

interest   in the  result.) 

xHere OdAj denotes the largest integer less than or equal to dA.    Since 
dA is the expected number of penetrators that are detected, this alloca- 
tion is a proportional allocation of defenders according to the expected 
number of detected penetrators. 
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DEFENDER SEQUENTIAL (Independent Detection) and DOUBLE 

SEQUENTIAL (Independent Detection):  If defenders are encoun- 

tered sequentially—whether by one penetrator at a time or by 

all penetrators simultaneously—then only the wording of Assump- 

tion 1 needs to be changed.  The independence assumption con- 

tained in Assumption 2 gives that all results of Section 1 

apply directly to these two cases (I and J above).  Indeed, 

Assumption 2 is more plausibly fulfilled if defenders are 

encountered sequentially. 

In summary, the attrition process presented in Section 1 

applies to cases E, I, and J in the taxonomy presented above. 

c.  Interpretation of our Assumptions 

We will now discuss some physical situations In which the 

assumptions of our attrition model, as presented in Section 1, 

are satisfied to some extent. 

Air-to-air combat motivated this model, and in certain cases 

thereof the assumptions seem reasonable.  Consider the following 

physical situation:  There are targets (cities, airbases, etc.) 

and the defenders erect a barrier by flying patrols in a fixed 

airspace between the targets and the homeland of the penetrators. 

For simplicity we picture this airspace to be a rectangular box 

(see Figure 1).  One by one, the penetrators attempt to penetrate 

through the barrier in order to attack the targets. 

Penetrators 

x  x 

x<-^defender positions 

-defended airspace 
(barrier) 

targets 

Figure   1 
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Assumption 1 will be discussed following the discussions of 

Assumptions 2 through 5 below. 

Assumption 2 appears to be hardest to satisfy.  If one iden- 

tifies the defenders by their positions in the barrier and in 

addition one knows the spot at which a penetrator will attempt 

penetration, then it isn't reasonable that all defenders should 

have the same probability of making a detection; those that are 

closest to the spot of attempted penetration certainly should 

have higher probability.  Without further clarification, this 

argument fails to contradict Assumption 2 because it involves 

conditional  probabilities:     given the locations of all defender 

aircraft and the point of the attempted penetration, those 

nearest to that spot will (under any reasonable assumptions con- 

cerning the physics of detection) have higher probability of 

making a detection.  But in terms of absolute probabilities 

the argument can be erroneous, for it requires information not 

used for computing unconditional probabilities.  First, suppose 

that defenders are exogenously identified (for example, by tail 

number) rather than by a property internal to the process, such 

as position in the barrier.  If we assume that defenders are 

assigned to barrier positions in such a way that all assignments 

are equally likely, then, even if the conditional probability of 

a defender's detecting a penetrator, given all positional infor- 

mation, depends on their relative positions, all defenders have 

the same unconditional probability of making a detection (more- 

over, actual computation of the detection probability d would 

presumably involve such a conditioning argument).  Note that no 

assumption was required above concerning the distribution of the 

point of attempted penetration. 

The independence part of Assumption 2 is the most difficult 

assumption to satisfy.  Indeed, suppose that the barrier and de- 

tection physics are such that, for any positions of the defenders 

and the attempted penetration, at most one defender can make a 
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detection (for example, the barrier has narrow depth and 

defenders are evenly spaced across its front).  Or suppose that 

the defenders1 positions are fixed and the penetrators all 

penetrate at the same place so as to saturate a strip through 

the barrier.  In either case the independence part of Assumption 

2 simply fails.  On the other hand, if each defender chooses a 

position in the barrier independent of the positions of all 

other defenders, then independent detections of a given penetra- 

tor will follow and consequently the independence part of 

Assumption 2 will be fulfilled.  In order that all defenders have 

the same probability d of detecting a particular penetrator, the 

random positions of the defenders must be identically distributed. 

The situation could be envisioned as that in which a penetrator 

passing within some critical distance r of a defender is detected; 

the ratio of =■ frr^ to the volume of the defended airspace might 
then be thought of as the detection probability d. 

Suppose that the defenders1 positions are chosen according 

to an arbitrary probability distribution over the defended air- 

space, and that once chosen these positions remain fixed through- 

out all attempted penetrations, except as defenders leave to 

engage in one-on-one interactions.  In addition, assume that each 

penetrator passes through the defended airspace along a straight 

line parallel to the long sides of the box (see Figure 2). 

+- penetrator path 

Figure 2 
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Assume further that the entry point is uniformly distributed on 

the short side of the box and that different penetrators make 

independent choices of entry points, which are also independent 

of the positions of the defenders.  Then: 

a) Different defenders detect a given penetrator indepen- 

dently of one another, because of the independence of the 

defenders' positions; 

b) If the probability that a defender detects a given pene- 

trator is taken to be the fraction of the airspace within which 

his detection equipment can operate (that is, any penetrator 

passing within a certain distance of the defender is detected)9 

then this probability of detection is the same for all defenders 

and all penetrators.  (If penetrators did not make independent 

choices of paths this probability might not be constant; in par- 

ticular if one penetrator passed through undetected and could 

relay this information back to other penetrators, then the suc- 

ceeding penetrators would follow the same path, and be detected 

with probability zero.) 

Hence in this case all parts of Assumption 2 are satisfied. 

Alternatively, one could assume that each defender's posi- 

tion is uniformly distributed over the defended airspace and is 

independent of the positions of the other defenders, and that 

after each attempted penetration each remaining active defender 

chooses a new position, which is uniformly distributed, indepen- 

dent of the past history of the attrition process, and independent 

of the new positions chosen by the other remaining defenders.  If, 

further, each penetrator chooses a path parallel to the long sides 

of the box independently of the paths chosen by other defenders 

but according to any probability distribution of the entry point 

on the short side (Figure 2 is still applicable) then again all 

parts of Assumption 2 are satisfied. 
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Yet another situation in which independence holds is that 

of "running the gauntlet" (Defender Sequential or Double 

Sequential Combat, as described above) (see Figure 3). 

Defenders 

xxx    x 

path of penetrators  > 

Figure 3 

One thinks of this situation in the following terms:  a pene- 

trator (or, equivalently, all penetrators) is vulnerable to 

detection first by one defender, then by the second defender, 

... , and so on to the last defender.  Whenever a detection 

occurs, it results in an immediate engagement between the de- 

fender making the detection and the detected penetrator (or, in 

the Defender Sequential case, between the detecting defender 

and one of the penetrators he has detected). 

An aspect of these situations is that they bring out in 

physical terms an interesting mathematical property of our model: 

a duality between defenders and penetrators.  All probabilities 

involving number of engagements, computed in Section 1 above, are 

the same for m defenders and k penetrators as for k defenders and 

m penetrators, which can lead to computational simplicity.  Other 

attrition distributions, of course, need not have this property 

(nor necessarily should they). 

Assumption 3 principally concerns the timing of the inter- 

actions and the capabilities of the defenders, but it may also 

concern tactics as well.  For example, given Assumption 5—that 

being engaged by one defender causes a penetrator to abort his 

primary mission—the tactic of the defenders may be to make as 

many one-on-one engagements as possible rather than to make 

fewer many-on-one engagements.  Implicit in Assumption 3 is 

the idea that the defense is always able to engage a detected 

penetrator (i.e., the penetrator cannot evade engagement and 
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continue to the target).  This is not restrictive because the 

detection probability d can be assumed to represent only engage- 

able penetrators. 

Once Assumption 3 is made, Assumption 4 is both natural and 

general, so it will not be discussed further.  The only point of 

possible disagreement is that the outcome is assumed to be inde- 

pendent of the history of the process; it may be that a defender 

is less effective the longer it has been on patrol.  Allowing 

for such effects would add considerable mathematical complexity 

to the model. 

The validity of Assumption 5 is related to the length of 

time over which the entire process of attempted penetrations is 

presumed to occur as well as to the inherent capability of the 

defenders.  If the length of a representative engagement is long 

relative to the overall length of the battle, then it is plausi- 

ble to assume that engaged defenders do not return to the barrier, 

A more symmetric argument applying to both defenders and penetra- 

tors is that an engagement exhausts the fuel or munitions (and, 

for penetrators only, causes the jettisoning of ordnance) to the 

extent that afterwards each will not attempt to resume its pre- 

vious mission, but must return to its base.  It may, however, 

participate in the next battle to occur.  In Section 3 we con- 

sider some ways this assumption can be weakened. 

As outlined above, the one-at-a-time attempts at penetra- 

tion specified by Assumption 1 can be replaced by assuming that 

the defenders are encountered one-at-a-time.  But the Markov 

nature of the process described in Section 1 requires sequential 

interaction in one sense or the other.  If the tactic of the 

side attempting penetration is to send a fixed number of penetra- 

tors at a time, and the defender1s tactic is to use a fixed 

number of defenders working in concert, then this case can be 

accommodated by replacing "penetrators" and "defenders" with 
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"groups of penetrators" and "groups of defenders" in Assumptions 

1, 2, 3, and 5, provided that those assumptions still hold for 

groups.  That is, if only Assumption *4 needs to be changed to 

handle group-on-group interactions, then the model of Section 1 

can be used, with Assumption 4 varied as appropriate.  Assumption 

5 appears to be the hardest to satisfy for groups, especially if 

the number of penetrators in a penetrator group is greater than 

the number of defenders in a defender group.  But if Assumption 5 

is satisfied, then Assumptions 2 and 3 are not implausible 

(Assumption 1 only serves to define the process). 

The applicability of this model to other forms of combat 

requires further examination.  In general all the assumptions 

appear more realistic the smaller the scale (in time, space, 

and number of combatants) of the process is assumed to be. 

Large scale processes might possibly be treated by decomposi- 

tion into independent engagements of smaller size.  Of the 

assumptions required, the hardest to satisfy would almost cer- 

tainly be the independence part of Assumption 2, although one 

can always use a model whose assumptions don't hold perfectly. 

Indeed, this seems preferable to using a model for which no 

underlying set of assumptions is known. 
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3.  GENERALIZATIONS 

By adding various assumptions, one can extend the basic 

model of Section 1 to more general situations. 

Perhaps the most desirable extension is to the case of 

heterogeneous forces of defenders and penetrators.  To make 

such an extension requires additional assumptions, which we 

make here in the simplest form.  Suppose first that there are 

J different types of penetrators.  We need to specify the order 

in which the various penetrators make their attempted penetra- 

tions since, in general, the probability of a successful penetra- 

tion will depend on the types (and not just the number) of 

penetrators which have previously attempted penetrations.  Here 

is the minimal set of assumptions required: 

6. All parameters mentioned in Assumptions 1-5 are now 

functions of the penetrator type j. 

7. There are a fixed number k of penetrators of type j, 

for j ■ 1, ..., J.  All penetrators of type j attempt their 

penetrations before any penetrator of type j + 1, for j = 1, 

••., J — 1. 

In other words, the penetrators attack in order by types 
(which requires the appropriate modifications to the taxonomy 
given in Section 2.b.).  For each j denote by P. the Markov 
matrix given by 
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PJ ■ 

0 

1 

2 

M 

0 

1 

d(J) 

0 

l-d(j) 

(l-(lKi(j))2  (l-d(j)); 

M-l M 

l-(l^i(j))M (l-d(J)) » 

where d(j) is the detection probability corresponding to a type j 

penetrator.  Corresponding to Theorem (2) we then have the follow- 

ing result. 

(14) THEOREM.  Under the extended set of Assumptions, the sto- 

chastic process D is a Markov chain, but does not have stationary 

transition probabilities.  Instead, for £ < k + . . .+ k. we have 

P{D£ = n|DQ = m} = 

P*(m,n) 

\rl r2 

if A<k 

Mk,+. 
J+l 

.+k.)\ 
J /(m,n) If k +...+k <l 

<k1+...+kj+1 

While the computations may be quite tedious, the concepts 

involved are simple.  Given these probabilities, all other com- 

putations follow as in Section 1.  In general, the number of 

defenders initially facing a given type of penetrator will be 

a random variable.  But the apparatus of Section 1 is quite 

capable of handling this.  For random numbers of the different 

types of penetrators, Theorem (14) fails; some computations are 

still possible, although quite complicated. 

For different types of defenders one would, analogously, 

assume the presence of several barriers (of whatever physical 
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form is felt to be appropriate) through which penetrators 

would pass successively.  (Here random numbers of different 

types of defenders can be handled.)  The mathematics of 

Section 1 has the necessary generality for a fully hetero- 

geneous model, but the computational and bookkeeping problems 

could be formidable. 

One can also include the possibility that a defender 

involved in, but surviving, an engagement, might return to 

the barrier.  Suppose (along with Assumptions 1-5) we make 

the additional assumption: 

8.  There is probability q that a defender surviving an 

engagement returns to the barrier.  If he does so, it is before 

any additional penetrations are attempted and whether he does is 

independent of past history of the process. 

Then all that changes is the transition matrix of the (D,) 

process, which now becomes the matrix P* given by 

P*(0,0) = 1 

and, for I >_ 1, 

(l-(l-d)1)[(p1+p3) + (p2+P1|)(l-q)]   if 3-1-1 

P*(i,j) = 

I 
(1-d)1 + (l-(l-d)i)(p2+p4)q If J « 1 

0 otherwise. 

Similar mechanisms can allow for the possibility that a 

penetrator surviving an engagement may continue to attack his 

target.  In this case the transition matrix P remains unchanged, 

as do the results of the computations in Section 1, but now we 

are also interested in the stochastic process (s^k>0 defined by 

S' = number of the first k penetrators which continue 
on to attack the target 

= sk + V 

25 



where 

G, = number of first k penetrators which are detected 
and engaged, not destroyed in the engagement, and 
continue on to attack the target. 

We make in this case the following additional assumption: 

9.  There is probability q that a penetrator engaged but 

not destroyed by the defenders continues on to attack the tar- 

get.  This occurs independently of the past history of the 

combat process. 

One then obtains the following characterization of the 

stochastic process (S'). 

(15) THEOREM.  Subject to Assumptions 1 through 5 and 9 

P{S' = m|Dn = r} =     2-*     Pk(r,r-j) x 
K     U       A,J: *+k-j=m 

jÄ(^Q
£(l^)n-£(n)(P2^,)n(P^P3>J"n 

for all m < k. 

PROOF.  We observe that, as a consequence of Assumption 9, for 

I  <  n < k 

P{G„ = *K = n} = (£)q*(l-q)n-* ; 
k   *|Vk 

we remind that V, is the number of the first k penetrators which 

are engaged but not destroyed.  From Theorem (6), 

P(Vk = n|Bk = j] = Q (p3+p4)
n (p1+P2)

j"n , 

for n £  j £  k.    Finally,   it follows from (7) that 

p[Sk = k-j|Bk = jj  = 1   . 
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Consequently, by independence, 

PiSk = k-j,Gk = l\\ =  jj 

= PtGk=*|Bk = i) 

= Z  P[Gk = I,  Vk = nl^ = ji 

S PiGk = jt|Vk = nj  PlVk = nl^ = ji 
n 

« (;)* CWUM (j) (P3+P4)  (P!+P2)- 

The result now follows by summing over j and I  and using the fact that 

p[Bk = j'Do = r] = pk(r>r-j>  • Q 

Calculations involving (S/) can now be made in the manner 

previously described. 

Other possible generalizations of the model include an analogous 

continuous time process, penetrator arrivals at random times, engage- 

ments of positive duration, the possibility of attempted penetrations 

during duels, and so on. 
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4.  COMPUTATIONAL ASPECTS 

Implementation of the basic attrition model of Section 1 

(or of the generalizations considered in Section 3) requires 

computation of powers of the appropriate transition matrix of 

the remaining defenders process (D,).  We consider this problem 

next, first in a general form and then specifically for the 

original matrix P of Theorem (2).  The general argument is 

applicable to the extensions discussed in Section 3; for 

simplicity we state it in terms of the original matrix P given 

in Theorem (2). 

P is a lower triangular matrix of the following form: 

P = 

P(0,0) 

Pd,0) P(l,l) 

P(2,l) P(2,2) 

P(M,M-1) P(M,M> 

We are Interested in: 

1. The matrix whose columns are the (right) eigenvectors 
of P—for the purposes of this section we denote this 
matrix by N, 

2. The inverse of N, and 

3. The product NDN~ where D is a diagonal matrix with 
elements 6. being the eigenvalues of P.  (Note that 

P has M + 1 distinct eigenvalues if 0 < d < 1.) 
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Once these are available we have 

P = NDN""1 

and consequently 

Pk = ND^"1 

for each k.  Since D is a diagonal matrix it follows that for 

each k 

Dk = diag {6j,...,5jj> 

and the computational problem is solved. 

First, it is clear from the form of P that 

,1 6± = P(i,i) = (1-d) 

for each i. 

If we put x. to be the eigenvector of P corresponding to the 

eigenvalue 6., normalized so that x.(J) = 1, then it follows that 

for i ^ 1 and each j 

P(i,i-l)xj(i-l) + P(i,i)Xj(i) = öjXj(i) , 

so that 

.)   if j M 

V 
p(i.i-i)     M .. 

i) =  J 

if j = i . 

We note also that 

(° if 3 + 0 
V0) = 

1 if j   =   0 
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Hence by induction 

xj(i) 

i 
n p(k,k-i) 

k=j+l 
if i > j 

n CP(j,j) 
A=j+1 

- P(X,X)] 

if i = j 

otherwise, 

Since N(i,j) = x.(i) this computation yields the matrix N, which 

is seen to be lower triangular. 

Next we consider the inverse of N. Since N is lower tri- 

angular and NN~ = I, the identity matrix, it follows that for 

j < i 

T-l, ,-1 -1 Xj(i)N"A(J,J) + xj+1(i)N'-L(j+l,j) + ...+ x1(i)N"
1(i,j) = 0 

and consequently 

K^Cifj) 

i-1 --1. 

= 

- I     xk(i) N 
x(k,j) 

k=j  
 x-TTl  

l 

0 

if i > j 

if i = j 

otherwise, 

This completes the necessary computations. 

For the specific matrix P of Theorem (2) (and presumably for 

matrices of generalized processes that have the same lower triangular 

form) we may use generating functions to compute the powers of P in 

closed form. 
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(16)  THEOREM.  For each n, i, and j we have 

,n 

1 i. i d-d)kn 

n (i-(i-d)*) I   -T— 
*=J+1     k=J n (d-d)k - (i-d)q) 

P (i,J) =< 

(l-d) in 

q=J 
q*k 

1° 

j < i and 

i - J < n 

j = i 

otherwise 

Note that Pn(i,j) is independent of M, the maximum possible 

number of defenders, except for the restriction that i,j < M. 

Before giving the proof let us recall the definition of a 

generating function (or z-transform); we refer to JURY (1964) 

for further details.  If f is a nonnegative function defined on 

the set {0,1,2,...}, then the generating function of f is the 

function f given by 

f(z) = I     f(n)z~n , 
n=0 

defined for whatever values of z for which the series is absolutely 

convergent. 

PROOF.  Since, existence questions aside, 

(I-z^P)"1 = I     z~nPn , 
n=0 

we have that 

(17) z(zI-P)-1 = I     z~nPn 

n=0 

and we will be done if we can invert the transform given in (17) 
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According to Theorem (2) we see that z(zI-P) is of the form 

A = 

A(0,0) 

A(1,0) 

0 

A(l,l) 

A(2,l) A(2,2) 

the precise values of the entries are momentarily irrelevant, 

Denoting by B the inverse of A we note that since A is lower 

triangular, B must be lower triangular, and 

A(0,0)B(0,0) = 1 
A(1,0)B(0,0) + A(1,1)B(1,0) 

A(1,1)B(1,1) = 1 
= 0 

More generally 

B(i>1) = ÄnbfT 

for each i, while for j < i 

B(i,j) = - Ai(i^)} B(i-l,J) , 

which allows us to conclude on the basis of induction that for 

i  1  !• 

i 
n  AU,*-1) 

B(i,j) = (-l)i-j ^^   • 

n A(k,k) 
k-J 
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But 

zl - P = 

z - P(0,0) 

- P(1,0) 

0 

z - P(l,l) 

- P(2,l) z - P(2,2) 

and therefore 

i 
n  P(A,Ä.-1) 

B<1.J) = z^P  
n  (z-P(k,k)) 

which we can expand in partial fractions as 

(18) 

where 

B(i,j) =  n P(ä,ä-1) (k)F^TTk 

a(k) = [ n  (P(k,k) 
q-J 
q*k 

- P(q,q))] 
-1 

TET] ' 

The term in brackets in equation (18) can be inverted since 

it is the sum of easily invertible functions.  Performing this 

inversion gives that 
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r    i i 
n   PU,*-D I 

*=J+1       k=J 

Pn(k,k) 

Pn(i,J) = < 

Pn(i,i) 

n  (P(k,k) - P(q,q)) 
q-J 
q/k 

J < i. 
i-j, £ n 

J = i 

otherwise 

But 

j = i 

j = i - 1 

otherwise, 

and hence we have Pn(i,i) = (l-d)ln and, whenever 1 - n < j < i, 

PnUJ) n (l-(l-d)*) I 
«,=j+l        k=j 

(1-d) kn 

i 
n 

q-J 
q/k 

((l-d)K - (l-d)q) 

which is the asserted result. Q 

We would like to thank Joseph J. Bolmarcich of Daniel H. 

Wagner, Associates, for suggesting a simplification which led 
,n to the form of P (i,J) given above, 
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